Principles of The Finite Analytical Method


The basic idea of the finite analytic method is the incorporation of a local analytic solution in the numerical solution of ordinary or partial differential equations. The finite analytic method decomposes the total region of a problem governed by differential equations into a number of small elements in which local analytic solutions are obtained due to locally simple geometry, equations, and boundary conditions. When the local analytic solution is evaluated at an interior node, it gives an algebraic equation relating the evaluated interior nodal value to its neighboring nodal values. The discrete model of the total problem is obtained by assembling and overlapping all local analytic solutions. The finite analytic numerical solution is then achieved by solving the system of algebraic equations assembled from these analytic solutions derived for each element. In the case of nonlinear problems the governing differential equation can be locally linearized and solved analytically. In this fashion the overall nonlinear effect can still be approximately preserved by the assembly of locally analytic-solutions.


	The finite analytic (FA) method thus differs from the finite-difference (FD) and finite-element (FE) methods in that the approximate algebraic analogy of the governing differential equation is obtained from an analytic solution. To illustrate the basic principles we consider a two-dimensional elliptic partial differential equation (PDE), e.g., � EMBED Equation.3  ���where L is a linear or nonlinear partial differential operator and g is an inhomogeneous term that depends only on the independent variables, taken to be x and y. The PDE is to be solved in the region D shown in Fig. 17.1. Let the boundary conditions be specified so that the problem is well-posed. The region D is subdivided into small rectangles. The intersections from the nodal points � EMBED Equation.3  ���I and � EMBED Equation.3  ���J. A typical subregion of the 


problem with node point � EMBED Equation.3  ���may be surrounded by the neighboring node points EC (east center), WC (west center), SC (south center), NC (north center), NE (northeast), NW (northwest), SE (southeast), and SW (southwest), which correspond to points � EMBED Equation.3  ���, 


� EMBED Equation.3  ���� EMBED Equation.3  ���and � EMBED Equation.3  ���respectively. 


	One D has been subdivided into simple rectangular subregions, an analytic solution in each subregion may be obtained. Let the linear or linearized governing equation in a simple subregion of � EMBED Equation.3  ���be � EMBED Equation.3  ���so that an analytic solution can be obtained for the subregion as a function of the boundary conditions, or


� EMBED Equation.3  ���			(17.1)





where � EMBED Equation.3  ���and � EMBED Equation.3  ���are, respectively, the northern, southern, eastern, 


and western boundary conditions of the subregion, and 2h and 2k are, respectively, the x and y lengths of the subregion. For numerical purposes, the boundary functions � EMBED Equation.3  ���, and � EMBED Equation.3  ���may be approximately expressed in 


terms of the nodal values along the boundary, e.g., � EMBED Equation.3  ���as shown. Substituting such boundary conditions into Eq. (17.1), including all four boundary surfaces, one has 





� EMBED Equation.3  ���		(17.2)





Equation (17.2) represents the analytic solution and contains a dependence on the local boundary values, � EMBED Equation.3  ���etc. Extracting this dependence 


explicitly, one can obtain the nine-point FA formula for � EMBED Equation.3  ��� when Eq. (17.2) is evaluated at point P. This can be written in the form� EMBED Equation.3  �





��


											(17.3)


Here the C’s are known analytic coefficients multiplying the corresponding neighboring nodal values � EMBED Equation.3  ���etc. 


	In general, Eq. (17.3) may be derived for each unknown nodal point � EMBED Equation.3  ���in internal subregions to form a set of algebraic equations relating the interior node to its neighboring nodes. The system of algebraic equations can be solved in conjunction with the boundary conditions of the problem to provide the FA numerical solution of the problem, the complex boundary conditions can be converted into an algebraic form with a finite-difference approximation relating the boundary node to the interior nodes. This is the essence of the FA method. 


	Convective, conductive, and radiative heat transfer problems, in general, are described by a set of partial differential equations that are a mathematical formulation of the laws of conservation of mass, momentum, and energy. 














Comparison of Finite Analytic And Finite-Difference Coefficients For 


Heat Equation





	Figure 17.3 shows the comparison of the FA coefficients with various FD coefficients as a function of ( for ( = 0.01-10. It should first be remarked that the FA formula is obtained without approximating the derivatives of partial differential equations. 





Applications of Finite Analytic Solutions





Ordinary differential problems


One can apply to linear and nonlinear ordinary differential equations. This was studied by Li and Chen10 and by Chen, Sheikholeslami and Bhiladvala11





P. Li and C. J. Chen, “The Finite Differential Method-A Numerical Solution to Differential Equations,” Proceedings, 7th Canadian Congress of Applied Mechanics, Sherbrokke, May 27-June 1, 1979.


C. J. Chen, M. Z. Sheikholeslami, and R. B. Bhiladvala, “Finite Analytical Numerical Method for Linear and Nonlinear Ordinary Differential Equations,” 8th International Conference on Computing Method in Applied Science and Engineering, Versailles, France, Dec. 14-18, 1987. Also J. Computer Meth. in Applied Mechanics and Engineering, Vol. 40, 1988.





Natural Convection Problems


The finite analytic solution was applied by Chen and Talaie12,13 to study steady and unsteady natural convection in rectangular enclosures. 





12. C. J. Chen and V. Talaie, “Finite Analytic Numerical Solutions of Laminar Natural Convection in Two-Dimensional Inclined Rectangular Enclosures,” 1985 National Heat Transfer Conf., Denver, CO, Aug. 4-7, 1985, ASME paper 85-HT-10. 





13. V. Talaie and C. J. Chen, “Finite Analytic Solution of Steady and Transient Natural Convection in Two-Dimensional Rectangular Enclosures,” presented at 1985 ASME Winter Annual Meeting, Miami, FL, Nov. 17-22, 1985, ASME paper 85-WA/HT-68. 


Flow and Heat Transfer Problem


The finite analytic method was used by Chen and Yoon14 and Chen and Chang15 to solve turbulent separated flow and heat transfer in rectangular and cylindrical cavities and flow behind steps. Further applications of the finite analytic method in flow problems are given in references 16-20.





C. J. Chen and Y. H. Yoon, “Prediction of Turbulent Heat Transfer in Flow Past a Cylindrical Cavity,” presented at 1985 Winter Annual Meeting, Symposium on Mixed Convective Heat Transfer, Miami, FL, Nov. 17-22, 1985, ASME 85-HTD, Vol. 53, ED. by B. F. Armaly and L. S. Yao, pp. 1-8.





16. C. J. Chen, C. H. Yu, and K. B. Chandran, “Finite Analytic Numerical Solution of Unsteady Laminar Flow Past Disc-Valves,” J. Engineering Mechanics, Vol. 113, No. 8, Aug. 1987, pp. 1147-1162.





17. C. J. Chen, C. H. Yu, and K. B. Chandran, “Steady Turbulent Flow Through a Disc-Type Valve-I: Finite Analytic Solution,” J. Engineering Mechanics, Vol. 114, 1988.





18. C. H. Yu, C. J. Chen, and K. B. Chandran, “Steady Turbulent Flow Through a Disc-Type Valve-II: Parametric Study on Disc Size and Position,” J. Engineering Mechanics, Vol. 114, 1988.





19. Y. N. Xu and C. J. Chen “Finite Analytic Numerical Prediction of Flow Over Flat Plate and Near Wake,” Proc. 20th Midwestern Mechanics Conference, West Lafayette, IN, Aug. 31-Sept. 2, 1987, pp.519-524.





20. V. C. Patel and H. C. Chen, “Turbulent Wake of A Flat Plate,” J. AIAA, Vol. 25, No. 8, 1987, pp. 1075-1085.





Supersonic Flow and Shock Wave Problems


The finite analytic solution for the hyperbolic equation in supersonic flow was obtained by Chen and Chen21 using the analytic solution obtained from the theory of characteristics. The shock wave in a n arbitrary convergent and divergent channel was predicted by the finite analytic method. 





C. J. Chen and W. C. Chen, “Prediction of Supersonic Oblique Shock Wave in Arbitrary Internal Passage by Methods of Characteristics,” Numerical Methods in Laminar and Turbulent Flow, Vol. 5, 1987, pp. 1009-1020.





Summary


One can introduce the finite analytic method and apply to the solution of heat transfer problems. The finite analytic method differs from other methods in that it utilizes the analytic solution of the governing equation for an element in constructing an algebraic representation of the partial or ordinary differential equation. Consequently, because of the analytic nature of the solution for the well-posed problem, the numerical solution is stable and relatively accurate. 


	The finite analytic coefficients in the finite analytic algebraic equation are obtained from the analytic solution. They at first appear to be complicated and time-consuming to evaluate. However, in practice, the time consumed in tabulating these finite analytic coefficients is a small portion of the total computation time. The stability and accuracy of the finite analytic method provides an attractive alternative means of obtaining numerical solutions in heat transfer problems. 


	One can present the basic treatment of the finite analytic method and some examples to illustrate the nature of finite analytic solution. For further applications of the finite analytic method, pertinent literature is cited in the references. 














Introduction To Monte Carlo


Monte Carlo, a branch of experimental mathematics, is a method of directly simulating mathematical relations by random processes. In physics, the Monte Carlo method has been used to solve numerous types of diffusion problems and has enjoyed a great deal of attention in recent years6. 





K. Binder, “Applications of the Monte Carlo Method in Statistical Physics,” Springer-Verlag, Berlin, 1984.





In heat transfer, interest has been relatively small. Radiation and conduction have dominated the use of the Monte Carlo method, while its application to convective problems has been insignificant, despite the fact that, for instance, the transport of energy in a turbulent flow depends on random processes. Future research in this area appears to be promising. 


	The Monte Carlo method, as stated earlier, is a statistical approach to the solution of multiple integrals of the type 





� EMBED Equation.3  ���       (16.1a)





where � EMBED Equation.3  ���are related to random variables and � EMBED Equation.3  ���� EMBED Equation.3  ���…, 


� EMBED Equation.3  ���are the corresponding cumulative distribution or probability distribution functions. If � EMBED Equation.3  ���is a random variable, then 





� EMBED Equation.3  ���probability (� EMBED Equation.3  ���(� EMBED Equation.3  ���)			(16.1b)





The main criticism of the Mote Carlo method concerns its inefficiency in dealing competitively with mathematical problems whenever there is an alternative solution. Understandably, this is true for a great many problems. However, the Monte Carlo method is extremely useful when (1) there is no other convenient method, (2) a simple procedure is needed to check the validity of a new method, and (3) in some instances, a computationally faster procedure is needed. Indeed, it is refreshing to see that the Monte Carlo procedure, for some problems, can result in a much faster solution than, for example, the finite-difference method. 





16.4 Definite Integrals


The Monte Carlo method provides a vehicle to numerically evaluate multiple integrals. Extensive details are available in Refs. 12 and 13. 





12. H. Kahn, “Application of Monte Carlo,” U. S. Atomic Energy Commission Report, Rand Corp., No. AECU-3259,1956.





I. M. Sobol, “The Monte Carlo Method,” University of Chicago Press, 1974, (English translation).


Monte Carlo becomes indispensable whenever multiple integrals have many variables and cannot be evaluated efficiently by standard numerical techniques. This condition exists in many radiation problems. 








Transient Conduction


The solution for transient heat conduction problems requires the assignment of a time increment to each step of a random walk. However, the Monte Carlo procedure for a floating random walk is different from that for the random walk with a fixed step size. The incremental time assigned to a random walk with a fixed step size is constant everywhere in a homogenous domain. The floating random walk procedure described earlier uses a combination of large radial steps, � EMBED Equation.3  ���( � EMBED Equation.3  ���, and small incremental steps, � EMBED Equation.3  ���(� EMBED Equation.3  ���, with the duration of a step depending on the size of the step. 





	Zinsmeister and Pan28 suggested a hybrid Monte Carlo method to  





28. G. E. Zinsmeister and S. S. Pan, “A Modification of the Monte Carlo Method For Steady Heat Conduction Problems,” Int. J. Numer. Methods Eng., 10, 1057-1064, 1976.





calculate temperature in the entire field. First, calculation of temperature is carried out, using Monte Carlo on the boundary of an inscribed regular domain, and then the internal temperature is computed analytically. 


	An important feature of Monte Carlo is its simplicity. It uses very little computer memory and requires minimal computer programming effort. Despite common belief, a Monte Carlo method can produce solutions to a class of thermal conduction problems faster than any conventional numerical method. Let us consider a situation for which the temperature should be determined repeatedly at a few internal points in a region for different boundary temperatures. Only a small portion of computer memory is needed to keep, and to store for subsequent use, a record of the number of random walks terminated at any given boundary point. 





Convection


Generally, the Monte Carlo solution of convection problems is similar to that described earlier for conduction applications. All discussions concerning the Monte Carlo method with a fixed step size, and in some instances with a variable step size, apply equally to convection problems. The class of convection problems suitable for Monte Carlo are linear, are decoupled from the momentum equations, and have a known velocity field. Information concerning nonlinear and/or coupled problems are rare. 





Radiation


Radiation problems posses a form ideally suited for Monte Carlo application, since it provides a vehicle to numerically evaluate multiple integrals. The integral that governs the emission of radiant energy depends on various parameters such as wavelength, angle of emission, and the nature of the medium.36-39 Also, different integrals govern the reflection and 





J. R. Howell and M. Perlmutter, “Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls,” J. Heat Transfer, 86 (1), 116-122, 1964.





37. M. Perlmutter and J. R. Howell, “Radiant Heat Transfer Through a Gray Gas Between Concentric Cylinders Using Monte Carlo,” J. Heat Transfer, 86, (2), 169-179, 1964.





38. L. C. Polgar and J. R. Howell, “Directional Thermal-Radiative Properties of Conical Cavities,” NASA TN D-2904,1965.





39. J. R. Howell, “Application of Monte Carlo to Heat Transfer Problems,” Adv. Heat Transfer, 5, 1-54; 1968.





scattering processes. Preliminary attention is directed to the study of radiant exchange between surfaces in the absence of a participating, medium. 





Application to Absorbing and Emitting Media


The procedure described for radiation exchange between different surfaces in the presence of a nonparticipating medium applies equally to participating media with some modification. Indeed, Monte Carlo can accommodate generalized radiation problems with a few approximations. Unlike analytical schemes, Monte Carlo dose not require numerous assumptions concerning the surface properties (e.g., black or gray, specular or diffuse) and gas properties (opaque or transparent, gray, isothermal, thick or thin, etc.) to achieve a solution.





Discussion


The Monte Carlo method plays two distinctly different roles in conduction and in radiation. In conduction, an abstraction using particles or random walks is used to simulate a solution of a partial differential equation, whereas in radiation a physical phenomenon, the transfer of photons, is simulated. The usefulness of the Monte Carlo method in thermal radiation has been fully established; it is one of the most important tools for dealing with radiation in absorbing, emitting, and scattering media. However, when dealing with the Laplace and diffusion equations, it has been used-only in practical applications where the number of coordinates in large. Since the maximum number of coordinates in thermal conduction problems is three, the need for Monte Carlo solutions has been limited. The development of new engineering materials has created numerous situations where the size and shape of the geometries may require incorporation of the Monte Carlo method with other numerical techniques to reduce the size of a problem to a manageable level. 








  






























































INTRODUCTION TO THE METHOD OF AVERGAE 


MAGNITUDE ANALYSIS AND APPLICATION 


TO NARURAL CONVECTION IN CAVITIES








ABSTRACT


The method of Average Magnitude Analysis is a mixture of the Integral Method and the Order of Magnitude Analysis. This method the governing equations to a system of algebraic equations, where the result is a sum of the order of magnitude of each term, multiplied by a weight coefficient. These coefficients are determined from integrals containing the assumed velocity and temperature profiles. The method is illustrated by applying it to the case of natural convection over an infinite flat plate with and without the presence of a horizontal magnetic field, and subsequently to enclosures of aspect ratios of one or higher. The final correlation in this instance yields the Nusselt number as a function of the aspect ratio and the Rayleigh and Prandtl numbers. This correlation is tested against a wide range of small and large values of these parameters. 








CONCLUSIONS


The Average Magnitude Method (AMA) was first introduced by solving the problem of drag and heat transfer over an infinitely long flat plate. It was shown that it is equivalent to the familiar integral method.


When the problem of natural convection over an infinitely long vertical flat plate was solved, it was shown that the AMA method had an advantage of clarity and simplicity over the integral method in terms of the role and meaning of the non-dimensional numbers Ra, Bo, and Pr. The same problem was solved in the presence of a horizontal magnetic field.


Finally the AMA method was applied to the solution of the natural convection problem in enclosures where because of the complexity of the geometry and boundary conditions it was not possible to calculate the three weight coefficients. The problem was handled by carrying these coefficients as unknowns. They were subsequently determined from a mixture of theoretical, numerical, and experimental information. The final correlation yields the Nusselt number as a unique function of Ra, Pr, and aspect ratio A, and was found to be adequate when tested against a wide range, of small and high values of these parameters.  





ILLUSTERATIVE APPLICATIONS





In this paper, we shall look at a few applications of the numerical methods described in this paper. The methods have been extensively tested and applied to a variety of practical situations. A review paper (Patankar, 1975) written the SIMPLE procedure contains a number of examples that were available at that time. Since then, many more applications have appears in the literature. A partial list of the published applications of the method now follows.


Two-dimensional elliptic situations involving fluid flow and heat transfer have been computed by Abdel-Wahed, Patankar, and Sparrow (1976). Majumdar and Spalding (1977), Patankar, Liu, and Sparrow (1977), Sparrow, Patankar, and Ramadhyani (1977), Patankar, Ramadhyani, and Sparrow (1978), Ganesan, Spalding, and Murthly (1978), Patankar, Sparrow, and Ivanovic (1978), and Patankar, Ivanovic, and Sparrow (1979).


Issa and Lockwood (1977) have modified the basic calculation method to handle both subsonic and supersonic regions in a single domain. Patankar and Spalding (1972a, 1974b) have used the three-dimensional elliptic procedure for situations involving turbulence, combustion, and radiation. Other three-dimensional elliptic problems have been solved by Caretto, Gosman, Patankar, and Spalding (1972), Patankar and Spalding (1974a, 1978), and Patankar, Basu, and Alpay (1977). 





- Patankar S. V., Rafiinejad D., and Spalding D. B., “Calculation of the Three-Dimensional Boundary Layer With Solutions of All Three Momentum Equations Comp,” Methods Appl. Mech. Eng. Vol. 6, p.283, 1975.





-Abdel-Wahed, R. M., Patankar, S. V., and Sparrow, E. M., “Fully Developed Laminar Flow and Heat Transfer in a Square Duct With One Moving Wall,” Lett. Heat Mass Transfer, Vol. 3, p. 355, 1976.





-Majumdar, A. K. and Spalding, D. B., “Numerical Computation of Taylor Vortices,” J. Fluid Mech., Vol. 81, p. 295, 1977.





-Patankar, S. V., Liu, C. H., and Sparrow, E. M., “Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area,” J. Heat Transfer, Vol. 99, p. 180, 1977.


-Sparrow, E. M., Patankar, S. V., and Ramadhyani, S., “Analysis of Melting in the Presence of Natural Convection in the Melt Region,” J. Heat Transfer, Vol. 99, p. 520, 1977.





- Patankar, S. V., Ramadhyani, S., and Sparrow, E. M., “Effect of Circumferentially Nonuniform Heating in Laminar Combined Convection in a Horizontal Tube,” J. Heat Transfer, Vol. 100, p. 63. (Also see the Erratum in J. Heat Transfer, Vol. 100, p. 367, 1978.





- Ganesan, V., Spalding, D. B., and Murthy, B. S., “Experimental and Theoretical Investigation of Flow Behind an Axi-Symmetrical Baffle in a Circular Duct,” J. Inst. Fuel, Vol. 51, p. 144, 1978.





- Patankar, S. V., Sparrow, E. M., and Ivanovic, M., “Thermal Interactions Among the Confining Walls of a Turbulent Recirculating Flow,” Int. J. Heat Mass Transfer, Vol. 21, P. 269, 1978.





- Patankar, S. V., Ivanovic, M., and Sparrow, E. M., “Analysis of Turbulent Flow and Heat Transfer in Internally Finned Tubes and Annuli,” J. Heat Transfer, Vol. 101, p. 29, 1979.



























































14.1  INTRODUCTION





The governing equations for radiative heat transfer are of integral and/ or integro-differential systems. Integral equations arise in the process of summing the radiation intensity  over the optical depths between surfaces or in enclosures, whereas integro-differential equations occur in combined mode radiation with conduction  and/or convection through participating gases[1-4]





S. Chandraskhar,  Radiative transfer, Dover, New York, 1960


 E. M. Sparrow and R. D. Cess, radiation Heat transfer, Brooks/Code, 1970


R. Siegel  and J. R. Howell, Thermal radiation  Heat Transfer, McGrow-Hill, New York, 1972


M. N. Ozisik, Radiative Transfer, Wiley-Interscience, New York, 1973





Finite-element  methods  are in a similar category in which differential equation are converted into  integral forms[8-13]





8-T. J. Chung, Finite  Element  analysis  in Fluid Dynamic, McGraw-Hill, New York,1978


J. N. Reddy and V. D. Murty, “finite Element Solution of Integral Equations Arising in Radiative  Heat Transfer and Laminar Boundary Layer Theory,” Numer. Heat Transfer, 1, 389-401,1978


R. Fernandes and J. Francis, “ Combined Conductive and Radiative Heat transfer in an Absorbing, Emitting and Scattering Cylindrical Medium,” ASME J. Heat transfer, 104,  594-601, 1982.


T. J. Chung, and J.Y. Kim “ Radiation View Factors by Finite Elements,” ASME J. Heat  Transfer, 104, 792-795, 1982


M. L.  Nice, numerical Properties Methodologies in Heat  Transfer, Hemisphere, 1983, pp.497-514


T. J. Chung, and J.Y. Kim “ Two-Dimensional Combined Mode Heat Transfer  By Conduction, Convection and Radiation in Emitting, Absorbing and Scattering Media-Solution by Finite Elements, “ ASME J. Heat Transfer, 106, 448-452, 1984.


The finite-element m
